switch language

Glex energikalkulator

Uansett hvilken energikilde du foretrekker for fremtiden, så har det konsekvenser for klima, helse, økonomi, natur og miljø. Denne energikalkulatoren lar deg lage din egen energimiks og visualisere mulighetene og utfordringene. Den tar sikte på å gi en bedre forståelse av hva som kreves for å bli karbonnøytral.

Du kan endre på energiglidebryterne til venstre og umiddelbart se hvilken innvirkning dine valg får. Du kan også se hva medianverdiene i 1,5-gradersrapporten fra Klimapanelet foreslår, og du kan velge forskjellige måter å visualisere dataene på.

Når du bruker verktøyet, husk at det er fysiske begrensninger for mengden en bestemt energikilde kan levere. Klimapanelet sier for eksempel at det globale tekniske potensialet til vannkraft er 15.000 TWh, mens verktøyet lar deg overskride dette tallet. Lignende begrensninger vil også gjelde for de andre energikildene. Prøv å være realistisk når du bruker verktøyet.

For Klimapanelets 2050-scenariet har vi brukt medianverdier fra 1,5-gradersrapporten (2018) og brukt en liten korreksjonsfaktor (1,07) for å nå total energiforsyning som framkommer fra rapportens medianverdi.

Siden vannkraften ikke er spesifikt listet, så har vi antatt 6 % andel i energimiksen (det vil si mer enn en dobling fra i dag, og to tredjedeler av det tekniske potensialet).

Mindre forskjeller fra publiserte data kan skyldes ulike måter å vurdere biomasse på, samt forskjell mellom den relative andelen av energikildens forsyning kontra forbruk (på grunn av tap av energi før den når forbrukerne, for eksempel ved raffinering av olje til bensin). På grunn av den relative lave energitilførselen fra andre energikilder, som tidevanns-, bølge- og geotermiske energikilder, er disse ikke inkludert i våre analyser.

Utregning av energikonsum kan gjøres på to måter, «direkte» eller «erstattet». Den direkte metoden viser faktisk konsum, men tar ikke høyde for energitap i konverteringen av fossile brensler til nyttbar energi (f.eks. via strøm). Mange rapporter velger derfor å bruke erstatningsmetoden for å synliggjøre hvor mye lavkarbon-energi som trengs for å erstatte fossilt. Hvis vindkraft produserer 100 TWh, og fossilt har 38% effektivitet (resten er varmetap), så oppgir de at vindkraft leverer 263 TWh, ikke de 100 TWh som faktisk ble levert. Vi har valgt å forholde oss til den direkte metoden fordi strømproduksjonen utgjør en liten andel av det totale energikonsumet, samtidig som svært mye av verdens fossile forbruk fortsatt er knyttet til oppvarming.

Om kalkulatoren

Vi laget denne energikalkulatoren for å gjøre det enklere å visualisere og forstå virkningen energiproduksjon har på jorden og menneskeheten. Produksjonen av energi vil alltid komme med en kostnad på en eller annen måte, og du vil se at det ikke finnes noen enkle løsninger for å skape den energien vi trenger. Det vil alltid være avveininger.

Målgruppen for verktøyet inkluderer alle som er interessert i klimaendringer enten du er ung eller gammel, student, lærer, ekspert eller politiker. Og vi håper virkelig at denne kalkulatoren vil bli brukt i undervisning.

Siden data knyttet til energiproduksjon kan være vanskelig å sammenligne (på grunn av ulike enheter), har vi konvertert alle dataene til påvirkning per TWh, og vi viser også påvirkningen i enheter som er enklere å relatere til.

Vi har forsøkt å bruke de mest robuste datakildene som er tilgjengelige (se nedenfor). Dataene er imidlertid ikke perfekte og bruker globale gjennomsnitt, og ignorerer dermed mange lokale faktorer. Eksperter er heller ikke nødvendigvis enige i tallene vi har valgt. Vi har derfor lagt til muligheten for brukeren å redigere inputdataene.

Noen aspekter er svært vanskelig å måle kvantitativt og er ikke inkludert her. Et slikt aspekt er stabilitet som er avgjørende for stabile kraftleveranser over tid. For eksempel, hvis du velger bare sol og vind, så trenger du batteribackup og supergrids for å sikre stabile leveranser hele året. Dette vil føre til at kostnadene øker langt utover det dette verktøyet viser - og du kan ende opp med å finne ut at det ikke er praktisk eller økonomisk mulig.

Andre ikke-kvantifiserbare parametere inkluderer frykt (f.eks. for atomkatastrofer og farlig avfall), visuell forurensning (f.eks. fra vindturbiner og solparker), verdi av uberørt natur, samt tap av plante- og dyrearter.

Til tross for disse manglene håper vi dette kan være et nyttig verktøy for å forstå hvordan energiproduksjonen er relatert til etterspørsel og påvirkning, og at kalkulatoren kan bidra til en fornuftig diskusjon om den fremtidige energimiksen.

Til slutt gjør vi oppmerksom på at vi ikke ønsker at du skal gjøre konklusjoner basert på dette verktøyet alene, men vi håper det vil bidra til å øke din kunnskap om våre energikilder.

Data

Dette er tallene vi har brukt for å regne ut fotavtrykket til energikildene. I noen tilfeller oppgir kildene intervaller. Da har vi benyttet median- eller gjennomsnittsverdier som kildene oppgir.

OPPDATERING 10.1.21: Kostnader for fornybart er oppdatert med 2020 tall fra IEA [35] (for fornybart tar IEA utgangspunkt i tall utarbeidet av IRENA [36], men kan avvike fra disse grunnet forskjellige utregninger). Merk at disse tallene antar en karbonavgift på 30 USD/tonn CO2. I stedet for å bruke "Lav stabilitet", har vi bestemt oss for å bruke begrepet "Ikke i drift" for bedre å gjenspeile at den prosentvise tiden kraftverkene ikke er i drift på grunn av aspekter som fravær av vind og sol, samt andre årsaker.

Dette er rett og slett 100% minus kapasitetsfaktoren. Kapasitetsfaktoren er oppdatert med faktiske 2019-tall fra Statista [34], med unntak av fossilt brensel og biomasse der vi har brukt IEAs 2020-antagelser om 85% kapasitetsfaktor.

IEA har valgt å gjøre det fordi brenselet alltid er tilgjengelig, slik at kraftstasjonene i teorien kan være i drift ved behov.
Kostnader for sol- og vindkraft reflekterer ikke integreringskostnader (bl.a. etablering av strømnett og behov for backup), noe som vil medføre vesentlig økte kostnader ved høy andel (>10-20%) i energimiksen.
Det er ikke tatt høyde for langtidsoperasjon av kjernekraft (LTO), noe som vil redusere kostnadene vesentlig. Ved 20 års forlengelse av eksisterende kjernekraftverk, vil denne energitypen være den billigste i følge IEA.

Vann Vind Sol Biomasse Kjernekraft Kull Olje Gass
Dødsfall/TWh 1,4 0,15 0,44 4,6 0,07 28,7 18,4 2,8
Utslipp tonn CO2eq/TWh 97000 4000 6000 98000 4000 820000 715000 490000
Arealbruk i m2/kW 7142,9 543,5 150,8 12500,0 4,2 7,4 5,1 2,1
Materialbruk i tonn/TWh 14068 10260 16457 235410 930 124019 87168 77877
Kritiske metaller i kilo/TWh 6,40 529,88 81,82 8,92 19,89 8,92 8,92 8,92
Kostnader i $/MWh 72 50 56 118 69 88 88 71
Ikke i drift (100% - kapasitetsfaktor) 61 % 65 % 76 % 15 % 6,5 % 15 % 15 % 15 %
Fast avfall i tonn/TWh ekskl. CO2eq 14068 10260 16457 21080 932,5 81725 1184 581
Andel av totalt energikonsum % 2,7 % 0,8 % 0,4 % 7,1 % 1,7 % 27,9 % 34,5 % 24,5 %

Kilder:


Data til dette prosjektet er innhentet av Jonny Hesthammer og Wouter Bell Gravendeel.

Arealbruk

[1] Van Zalk, John, og Paul Behrens. “The Spatial Extent of Renewable and Non-Renewable Power Generation: A Review and Meta-Analysis of Power Densities and Their Application in the U.S.” Energy Policy, vol. 123, Dec. 2018, pages. 85–88. DOI.org (Crossref), doi:10.1016/j.enpol.2018.08.023.

Kostnader

[2] Renewable Energy Costs in 2018. IRENA, 2019. [Online]. Available: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf. [Accessed: 24. March 2020]

[3] Stacy, Thomas F., og George S. Taylor. The Levelized Cost of Electricity from Existing Generation Resources. Institute for Energy Research, June 2019. [Online]. Available: https://www.instituteforenergyresearch.org/wp-content/uploads/2019/06/IER_LCOE2019Final-.pdf. [Accessed: 24. March 2020]

[4] “New Energy Outlook 2019.” Bnef.Com, BloombergNEF, 2019. [Online]. Available: https://bnef.turtl.co/story/neo2019/. [Accessed: 26. March 2020]

[35] International Energy Agency, «Projected Costs of Generating Electricity », IEA, France, 2020 [Online]. Available: https://www.iea.org/reports/projected-costs-of-generating-electricity-2020. [Accessed: January 10, 2021]

[36] M. Taylor, Pablo Ralon, H. Anuta, og S. Al-Zoghoul, «Renewable Power Generation Costs in 2019», IRENA, ISBN 978-92-9260-244-4, 2020 [Online]. Available: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Jun/IRENA_Power_Generation_Costs_2019.pdf. [Accessed: January 10, 2021]

Utslipp

[5] R. Turconi, A. Boldrin, og T. Astrup, “Life cycle assessment (Lca) of electricity generation technologies: Overview, comparability and limitations,” Renewable and Sustainable Energy Reviews, vol. 28, pp. 555–565, Dec. 2013, doi: 10.1016/j.rser.2013.08.013.

[6] M. Pehl, A. Arvesen, F. Humpenöder, A. Popp, E. G. Hertwich, og G. Luderer, “Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling,” Nature Energy, vol. 2, no. 12, pp. 939–945, Dec. 2017, doi:10.1038/s41560-017-0032-9. Supplementary tables download link: https://static-content.springer.com/esm/art%3A10.1038%2Fs41560-017-0032-9/MediaObjects/41560_2017_32_MOESM2_ESM.xls

[7] R. K. Pachauri, L. Mayer, og Intergovernmental Panel on Climate Change, Eds., Climate change 2014: synthesis report. Geneva, Switzerland: Intergovernmental Panel on Climate Change, 2015. [Online]. Available: https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_annex-iii.pdf. [Accessed: 17. March 2020]

Dødelighet

[8] A. Markandya, og P. Wilkinson, “Electricity generation and health,” The Lancet, vol. 370, no. 9591, pp. 979–990, Sep. 2007, doi: 10.1016/S0140-6736(07)61253-7.

[9] B. K. Sovacool et al., “Balancing safety with sustainability: assessing the risk of accidents for modern low-carbon energy systems,” Journal of Cleaner Production, vol. 112, pp. 3952–3965, Jan. 2016, doi: 10.1016/j.jclepro.2015.07.059.

[10] H. Ritchie, “What are the safest sources of energy?,” Our World in Data, 2020. [Online]. Available: https://ourworldindata.org/safest-sources-of-energy. [Accessed: 17. March 2020]

[11] J. Conca, “How deadly is your kilowatt? We rank the killer energy sources,” Forbes. [Online]. Available: https://www.forbes.com/sites/jamesconca/2012/06/10/energys-deathprint-a-price-always-paid/. [Accessed: 17. March 2020]

Materialbruk

[12] “Quadrennial Technology Review 2015.” Energy.Gov, U.S. Department of Energy, Sept. 2015, [Online]. Available: https://www.energy.gov/sites/prod/files/2017/03/f34/quadrennial-technology-review-2015_1.pdf. [Accessed: 23. March 2020]

[13] “Fuel Consumption of Conventional Reactor.” Nuclear Power, Nuclear Power, unknown. [Online]. Available: https://www.nuclear-power.net/nuclear-power-plant/nuclear-fuel/fuel-consumption-of-conventional-reactor/. [Accessed: 23. March 2020]

[14] Wang, T. “Capacity Factors for Selected Energy Sources U.S. 2018.” Statista, 21 Oct. 2019. [Online]. Available: https://www.statista.com/statistics/183680/us-average-capacity-factors-by-selected-energy-source-since-1998/ [Accessed: 23. March 2020]

[15] Benzo Energy, “What is the weight of lithium-ion battery per kWh? - Benzo Energy / China best polymer Lithium-ion battery manufacturer,lithium ion battery,lipo battery pack,LiFePO4 battery pack, 18650 batteries, Rc battery pack,” 21-Oct-2019. [Online]. Available: http://www.benzoenergy.com/blog/post/what-is-the-weight-of-lithium-ion-battery-per-kwh.html. [Accessed: 26. March 2020]

Kritiske metaller

[16] Publications Office of the European Union. Critical Metals in the Path towards the Decarbonisation of the EU Energy Sector: Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies. 10 Oct. 2014. [Online]. Available: http://op.europa.eu/en/publication-detail/-/publication/505c089c-7655-4546-bd17-83f91d581190/language-en/format-PDF. [Accessed: 23. March 2020]

[17] European Commission. “Critical Raw Materials.” Internal Market, Industry, Entrepreneurship and SMEs - European Commission, European Commission, 5 July 2016. [Online]. Available: https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en. [Accessed: 23. March 2020]

Avfall

[12] “Quadrennial Technology Review 2015.” Energy.Gov, U.S. Department of Energy, Sept. 2015, [Online]. Available: https://www.energy.gov/sites/prod/files/2017/03/f34/quadrennial-technology-review-2015_1.pdf. [Accessed: 23. March 2020]

[18] “5 Fast Facts about Spent Nuclear Fuel,” Energy.gov, 30-Mar-2020. [Online]. Available: https://www.energy.gov/ne/articles/5-fast-facts-about-spent-nuclear-fuel [Accessed: 25-May-2020]

[19] F. Lamers, M. Cremers, D. Matschegg, and C. Schmidl, “Options for increased use of ash from biomass combustion and co-firing,” 2018 [Online]. Available: https://www.ieabioenergy.com/wp-content/uploads/2019/02/IEA-Bioenergy-Ash-management-report-revision-5-november.pdf [Accessed: 25-May-2020]

[20] T. H. Adams, “Coal Ash Recycling Rate Declines Amid Shifting Production and Use Patterns,” American Coal Ash Association, Washington, D.C., Nov. 2019 [Online]. Available: https://www.acaa-usa.org/Portals/9/Files/PDFs/Coal-Ash-Production-and-Use.pdf [Accessed: 25-May-2020]

[15] Benzo Energy, “What is the weight of lithium-ion battery per kWh? - Benzo Energy / China best polymer Lithium-ion battery manufacturer,lithium ion battery,lipo battery pack,LiFePO4 battery pack, 18650 batteries, Rc battery pack,” 21-Oct-2019. [Online]. Available: http://www.benzoenergy.com/blog/post/what-is-the-weight-of-lithium-ion-battery-per-kwh.html. [Accessed: 26. March 2020]

Stabilitet

[21] Wang, T. “Capacity Factors for Selected Energy Sources U.S. 2018.” Statista, 21 Oct. 2019. [Online]. Available: https://www.statista.com/statistics/183680/us-average-capacity-factors-by-selected-energy-source-since-1998/ [Accessed: 23. March 2020]

[34] N. Sönnichsen, “Capacity factors for selected energy sources U.S. 2019”, Statista, July 27, 2020. [Online]. Available: https://www.statista.com/statistics/183680/us-average-capacity-factors-by-selected-energy-source-since-1998/. [Accessed: January 10, 2021]

[35] International Energy Agency, «Projected Costs of Generating Electricity », IEA, France, 2020 [Online]. Available: https://www.iea.org/reports/projected-costs-of-generating-electricity-2020 . [Accessed: January 10, 2021]

Dagens energiforbruk per energikilde

[22] B. Dudley, “Statistical review of world energy,” BP global, 2019. [Online]. Available: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html. [Accessed: 17. March 2020]

[23] V. Smil, Energy and civilization: a history. Cambridge, Massachusetts: The MIT Press, 2017. [Online]. Available: http://vaclavsmil.com/2016/12/14/energy-transitions-global-and-national-perspectives-second-expanded-and-updated-edition/. [Accessed: 17. March 2020]

[10] H. Ritchie, “What are the safest sources of energy?,” Our World in Data, 2020. [Online]. Available: https://ourworldindata.org/safest-sources-of-energy. [Accessed: 17. March 2020]

CCS

[24] B. Metz, O. Davidson, M. Leo, L. Manuela, and H. de Coninck, “Carbon Dioxide Capture and Storage,” Intergovernmental Panel on Climate Change, New York, 2005 [Online]. Available: https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_wholereport-1.pdf [Accessed: June 22, 2020]

[25] S. Budinis, S. Krevor, N. M. Dowell, N. Brandon, and A. Hawkes, “An assessment of CCS costs, barriers and potential,” Energy Strategy Reviews, vol. 22, pp. 68, table 6, Nov. 2018, doi: 10.1016/j.esr.2018.08.003.

Energimiks 2050 (IPCC medianverdier)

[26] J. Rogelj, D. Shindell, and K. Jiang, “Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development,” IPCC, 2019, page 132-133 [Online]. Available: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_Chapter2_Low_Res.pdf [Accessed: May 6, 2020]

Energiforbruk og arealbehov per person

[27] D. Mackay, Sustainable Energy - Without the hot air. Cambridge: UIT, 2009 [Online]. Available: https://www.withouthotair.com/[Accessed: June 22, 2020]

[28] “Energy use (kg of oil equivalent per capita) | Data.” [Online]. Available: https://data.worldbank.org/indicator/EG.USE.PCAP.KG.OE?view=map[Accessed: June 22, 2020]

[29] “List of countries and dependencies by area,” Wikipedia. 10-Jun-2020 [Online]. Available: https://en.wikipedia.org/w/index.php?title=List_of_countries_and_dependencies_by_area&oldid=961823799[Accessed: June 22, 2020]

[1] Van Zalk, John, og Paul Behrens. “The Spatial Extent of Renewable and Non-Renewable Power Generation: A Review and Meta-Analysis of Power Densities and Their Application in the U.S.” Energy Policy, vol. 123, Dec. 2018, pages. 85–88. DOI.org (Crossref), doi:10.1016/j.enpol.2018.08.023.

Konvertering

[30] Tons Of Coal Equivalent to Tons Of Oil Equivalent | Kyle’s Converter. [Online]. Available: http://www.kylesconverter.com/energy,-work,-and-heat/tons-of-coal-equivalent-to-tons-of-oil-equivalent. [Accessed: 23. March 2020]

[31] Cubic Feet Of Natural Gas to Tons Of Oil Equivalent | Kyle’s Converter. [Online]. Available: http://www.kylesconverter.com/energy,-work,-and-heat/cubic-feet-of-natural-gas-to-tons-of-oil-equivalent. [Accessed: 23. March 2020]

[32]“Cubic Feet to Cubic Meters Conversion.” Metric Conversions, Wight Hat Ltd.. [Online]. Available: https://www.metric-conversions.org/volume/cubic-feet-to-cubic-meters.htm. [Accessed: 23. March 2020]

[33] Hofstrand, Don. Biomass Measurements and Conversions | Ag Decision Maker. Iowa State University, Oct. 2008. [Online]. Available: https://www.extension.iastate.edu/agdm/wholefarm/html/c6-88.html. [Accessed: 23. March 2020]